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Frequency Fitting of Rational Approximations 
to the Exponential Function 

By A. Iserles and S. P. N0rsett 

Abstract. Rational approximations to the exponential function are considered. Let R = P/Q, 
deg P = deg Q = n, R(z) = exp(z) + ?(z2n-I) and R(+iT) = exp(?iT) for a given posi- 
tive number T. We show that this approximation is A-acceptable if and only if T belongs to 
one of intervals, whose endpoints are related to zeros of certain Bessel functions. The 
existence of this type of approximation and its connection to diagonal Pade approximations is 
studied. Approximations which interpolate the exponential on the imaginary axis are im- 
portant in the numerical analysis of highly-oscillatory ordinary differential systems. 

1. Introduction. The study of rational approximations to the exponential function 
plays a central role within the framework of the numerical analysis of stiff ordinary 
differential equations. 

Let R be a rational function, R = P/Q, deg P = m, deg Q = n, Q(O) = 1. R is 
said to be of order p if 

R(z) = ez + O(zP+') 

and A-acceptable if I R(z) I< 1 for every complex z such that Re z < 0. These 
concepts are important, because of their relation to order and stability of numerical 
schemes for stiff equations. 

It is well known that the maximal attainable order is m + n, in which case we 
have the classical Pade approximations to exp(z). The A-acceptability of these 
approximations has been studied extensively and the proof that A-acceptability is 
attained just for m s n < m + 2 was given by Wanner, Hairer and N0rsett [8]. 

It is useful for some practical purposes to relax the order conditions at the origin 
and to use the ensuing degrees of freedom to interpolate the exponential at some 
other points. In this context Liniger and Willoughby [5] introduced the concept of 
exponentialfitting of order p at z = zo, namely that R(z) = exp(z) + 0(1 z - zo P+ 1). 
In their paper they discussed the cases 1 < m < n < 2, and considered either up to 
two real, negative, fitting points or a conjugate pair of fitting points with negative 
real parts. The case of exponential fitting to real, negative, points has also lately 
been studied by Iserles and Powell [3]. The main result of [3] is that exponential 
fitting at more than two negative points results in non A-acceptable approximations. 

The purpose of this paper is to investigate the frequency fitting, namely exponen- 
tial fitting at conjugate, pure imaginary points. We restrict ourselves to m = n and 
order 2n - 2 at the origin. Frequency fitting is important within the framework of 
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numerical solution of highly oscillatory equations. The case 1 n ? 2 has already 
been studied by Lambert [4], as well as in the path-breaking paper of Liniger and 
Willoughby [5]. 

We show that, while fitting at z0o iT, as T varies from zero to infinity, 
intervals of A-acceptability and non A-acceptability occur. The endpoints of these 
intervals are related to zeros of spherical Bessel functions of the first kind. 

In a later paper we hope to analyse the more complicated case of fitting at two 
conjugate points z0 and Z., with Re z0 < 0. Our motivation is to characterize all the 
A-acceptable approximations which use all their coefficients to fit the exponential in 
{z E C: Re z < 0). 

2. Frequency Fitting. As already mentioned in the introduction we set m = n and 
demand order 2n - 2 at the origin. The general form of such approximations is 
given by N0rsett [6] and Ehle and Picel [2], 

(1 -( a- /3)Pn7n(z) + aP(n-l)/n(Z) + PP(n-2)/n(Z) 
(.1) Rn(; a, ) =l (1 a- 3)Qnln(z) + aQ(n-I)7n(Z) + fQ(n-2)ln(z) 

where a and f are arbitrary constants and Pm/n and Qrn/n are the numerator and the 
denominator, respectively, of the Pade approximation Rm7n, 

Pm/7(Z) = (n + m)!(r k Qm/n(z) = Pn/rnQZ) 

The exponential fitting of Rn at z0 and F0 gives two linear equations for the 
determination of the parameters a and /3, namely 

(2.2) Rn(ZO; a, 3) eZo, R(F0; a, /3) = ezO. 

Note that, if a solution to (2.2) exists, it is necessarily real. 
This pair of equations can be reformulated, by using the relation (2.1), as 

2.3 [ n/n O) )( n-I)/nJ(ZO ); Anl/n (ZO ) ( n --2)/ n (ZO) a [ R1 n/ n (Z?O) (2.3) [~n7n(ZO) - (l/lZ) 00z)-#(2/lz)[] 
[,- 

z) 

[4'n/n(ZO) -(n- l)/ln( ZO); 14'nn(i0) - 4(n-2)/n(zO)B/LJ [4i070(ZO) n 

where 

4'n7n(Z) Qm7n(z)ez - Pmrn(Z). 

The determinant Dn(z0) of the system (2.3) is 

Dn(Z0) = 2iIm{[#n7n(ZO) -(n-4l)/n(ZO)] [#(n-1)/n(zO) i(n-2)1n(ZF)] 

By using the fundamental, readily verifiable relations 

(2.4) 4mrn(Z) n + (m-l)/Jn(z) + nml(n-1)(z) n + m ~~~n H-m 
1 

(2.5) 4m7n(Z) 4km- )/(n+l)(Z) + m+n Zn/(m-1)/n(Z), 

n 
(2.) 4rn7(Z) 4kr~l)n(Z +(m + n)(m + n - 1) 



RATIONAL APPROXIMATION OF EXPONENTIALS 549 

we find 
fl 2 

(2.7) Dn(z) =2( - 1)(2 - 1)2 z ilm{#(nfl)/(n-l)(z)4(n-2)/(l-1)(z)}. 

Furthermore, whenever Dn( zo) # 0, 

Im{rnfl/nn(zO)#(n-2)/n((zO) } 
a = an(ZO) =-2i Dn(ZO) 

(2.8)I{#/f()#fl/(O} 

, = /n(z0) = 2i Dn(ZO) 

This leads to our first conclusion: 

THEOREM 1. The exponential fitting to zo and z0 is possible whenever 

Im{(n-l1)/(n-l)(zO)#(n-2)/(n-l)(zO)} 0. The coefficients a and /B are real and given 
by the formulae (2.8). 0 

Let zo = iT, T C R. It is well known that Rnln is symmetric, namely 

I Rnln( iY ) I-1 

for all real y. It is natural to expect Rn to retain this property, when a and ,B are 
given by (2.8). To prove that this is indeed the case we need the following results: 

LEMMA 2. 

a()+2n-1I 2ni 
an ( Z ) + 1 gn((Z) - 1 Im { n I/( Z ) (n l)/(n - l)(Z)}/Dn(z). 

Proof. From (2.8) 

an(z) +2n -nl /n(Z) 

2iIm {nn(Z)[ n-l -I(n-I)/n(Z) - (n-2)/n(Z)j }/Dn(Z)- 

The desired result follows by (2.4). 0 

LEMMA 3. If T c R, then Im{fn/n(iT)(n - 1)/(n- 1)(-iT)} 0. 

Proof. The relation P,7n(Z) = Qn/n(-Z) yields 

Anln Z) 
= 

Qnln(z)e 
- Pnln(Z) 

= Pn7n(-z)ez - Qnn( z) 

= ez[Qnln7(z)e- Pn7n(-Z)] = ez#n7n( z)- 

Therefore 

n /In(Z)4(n-1)/(n-1)(Z) (-e -z))(-e- z 
and 

Im{rnf/nn(z)(nl)/(nl1)(z)} = e2Rez 
Im{rnf/n(-Z)(f-1)/(n-1)(-Z)}. 

When z = iT this gives 

Im{rnf/n(iT)#(n- )/(n-1I)(-iT)} = Tm {fn/ln(iT )(n - 1)/(n- 1)(-iT)} 

and, consequently, Im{f/nl(iT)#(nl 1)/(n- 1)(- iT)} = 0. O 



550 A. ISERLES AND S. P. N0RSETT 

THEOREM 4. Let z = iT, T E R, and a, /3 be given by (2.8). Then Rn is a symmetric 
function and 

R11(z; an(iT), fln(iT)) = R*(z; -yn(T)) 

(1 -yr(T))Pnln(Z) + yn(T)P(n-1)1(n-1)(z) 

(1- yn(T))Q,nn(z) + yn(T)Q(n-l)/(n-l)(z) 

where 
-n 

-yr(T) = -n _l ,JniT) . 

Proof. By the symmetry between Pnln and Qnln, it is sufficient to consider the 

numerator only. From Ehle and Picel [2] 

-n 

P(n-2)ln(Z) 
= 

P(n-I)ln(Z) 2n - I P(n-1)/(n-1)(Z) 

Therefore 

(1 - a - /)Pn7n(z) + aP(n-I)/1n(Z) + PP(n-2)ln(Z) 

( a- /)Pnn(Z 
- n- |P(n-1)1(n- ) n - 1 

+ a +n -I 3) P(n-l)/n(z). 

Let a = a,,(iT),,8 = /3A(iT). Then, by Lemmas 2 and 3, 

a+ I A-=IO. 2n -1 

The proof follows. LI 

The main conclusion to be drawn from Theorem 4 is that, from now on, we can 

study the rational function R* with respect to existence, i.e. Dn(iT) =# 0, and 

A-acceptability. Moreover, since I R*(iy, y,,(T)) 1 for every y E R, the approxi- 

mation is A-acceptable if and only if it is analytic in the complex left half plane-in 

other words, if all its poles are in C(+) ={z E C: Re z > 0). 

3. The Behavior of the Frequency-Fitted Approximation. As we have already 

stated, the approximation R* exists whenever Dn(iT) =# 0. The definition of yn 
implies that this happens when y,,(T) is bounded. 

It is helpful to derive another expression for -y,1(T): by definition 

R*t( iT, y,,(T)) = e?LT. 

Solving for y,,, we obtain from (2.9) 

(3.1) y (T ) =pn/n(iT) 

~pnln(iT) 
- ~n )(-1(T 

For n > 2 we know from Ehle and Picel [2] that 

(3.2) 1pn7/n(Z) = n)/(nn1)(nZ) 4(2 n -(1 ))(2n-z)3 
4(2n - 1)(2n - 3) Z~n2/n2( 

Hence (3.1) gives 

(3.3) yn(T) 4(2n - 1)(2n - 3) 4nl(iT) 
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Let r(n) < r(n) < * denote all the roots of the equation 4n/n(UT) = 0, T > 0, i.e. 
the "natural" interpolation points of the nth diagonal Pade aproximation along the 
open upper imaginary half-axis. It is easy to see that there exists an infinite number 
of such points. 

LEMMA 5. yn(T) is unbounded if and only if T = ?r(n2) for some k > 1. 

Proof. By (3.3), if T = r(n-2) then yn(T) becomes unbounded. If T =-r(n-2) 

then the same follows by yn(T) = yn(- T). Finally, if T = 0 then yn(T) = 0, because 

4Pm/m(iT) = C(T2m?l) for every m > 0. An inspection of (3.3) shows that no other 
values of T might give unboundedness. O 

Let us split Pnln into a sum of even and odd polynomials, i.e. Pnln(Z) = En(z2) + 
zUn(z2). By symmetry Qn/n(z) = En(z2) - n(z2) and 

(3.4) 4nl(niT) = (En(-T2 ) -iTUn(-T2)) eiT - (En(-T2 ) + iTUn(-T2)) 

= 2ieiT/2(En(- T2)sin - TUn(-T2 )cos 2 
22 

Let 

(3.5) rn(T) En(-T2)sin 
T 

-TUn(-T2)cos 2T. 
22 

Then from (3.1) 

(3.6) yn((T) = rn(T ) 

Furthermore, it is obvious from (3.4) and (3.5) that, for T > 0, the zeros of rn(T) are 
exactly {rk )}k= . 

Example. By considering the explicit expression for Rn/n, it is easily obtained that 

EO(x) = 1, UO(x) = 0, ro(T) sin 2 

El(x) = 1, Ul(x) = rl(T) sin - 
I 

Tcos 2; 2 ~~2 2 2' 

E2(X) = I + 2x, U2(x) = 2 
1 

r2(T) = (I- T2 T2)sin - - - Tcos -2 

E3(x) = 1 + Ix, U3(x) = I+ x 

r3(T) = (- n - 1- 0 T3 )cos 2. 

The zeros of rn are the positive solutions of the nonlinear equation 

TUn(-T2) T 

En(-T 2) 2 

The geometrical picture of these equations is presented in Figure 1. 
This is the place to mention that TUn(- T2 )/En(- T 2) is the nth Pade approxi- 

mation to tg(T/2). The proof follows at once from the definition of Un and En and 
from the invariance theorem for Pade approximations [1, p. 113]. 
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T 

2 

T, TT 37 4: 5n 

112 

FIGURE 1 

The functions present in rn(T), n0, 1, 2, 3. 

The zeros of r (T) are indicated by 'LO' 

There are three sets of special values of T which are important to the present 
work, namely the zeros of y"(T), the roots of the equation y"(T) =1 and the points 

where -yn(T) becomes unbounded. A simple examination of (3.6) shows that R*(z; 0) 

Rn/n(z) and R*(z; 1) R(n-1)/(n-1)(Z), while (3.3) yields that lim1y1 0R*(z, y) 
= R(n2)(n-2) (iT). The pattern of passage of y"(T) through the different special 

values, as a function of T, is central to the understanding of the approximation. 

Example. Let n = 2. Then 

T) -2-12 -2 2 

T( 2)tg 2 

This expression is similar to a formula of Liniger and Willoughby [5]. By simple 

calculation 

y'(T) I- 12 [i(1+tg2 )T2 + Ttg-2tg2i] 

and y'(T) < 0 for T > 0. Figure 2 illustrates the shape of y2(T). It will be proved 

later that the pattern of passage of Y2 through the special values is typical. 
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Tr 2nT 3nr 4T sT 

FIGURE 2. Y2(T), T > O 

O : Y( T) I 

D:Iy(T)= 1 

A: y(T) = 0 

LEMMA 6. 

n(T) 
(-1) n!22n 00 (1)k k! (IT 2k+V 

(2n)! k=n (2k + 1)! (k-n)! 2 

Proof. It is easy to see from (3.2) and (3.5) that 

rn(T) = rn _ 1(T) - 1 T 2rn -2(T). 
4(2n - 1)(2n - 3) 

This three-term recurrence relation, in conjunction with 

ro(T) = sin - = 2k+)) T) 2 
k0O (2k +1)! 

r,(T) = sin T--TcosT-= -2 
00 Ik 

I-T i,+ 2 2 2 =- 
(2k + 1)! 2T 

determines the r 's for every n 2 0. The proof is completed by a simple induction 
argument. O 

LEMMA 7. 

rn(T) = 2 (2n)! (2 ) n+1/2 2 

where Jn+1/2 is the nth spherical Bessel function of the first kind. 
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Proof. By Lemma 6 

n 1.2 2 (_ )k_ (n +k)! T 2 

r"(T) = (2 )!(2T) k=O k! (2n + 2k + 1)!( 2) 

= n (T) oFI 16 T 
2 1 2n! 

2(2n)! n+3 

The proof follows by the definition of Bessel functions of the first kind [7, p. 108]. 
0 

We investigate now the sign of yn(T). By (3.6) 

(3.7) sgny,,(T) = sgn(r,'-1(T)rn(T) -rn- (T)rn(T)) 

= gt2 (Jn+ 1/2( 2 )Jn- 1/2( 2 ) Jn+ 1/2( 2 ) n- 1/2( 2 ) 

-jn+ l/2( 2 )Jn- 1/2( 2 ) 

By[7,p. Ill] 

2 T1-1/2 ) = 2 Tjn+ 1/2() (n 2 )Jn- 1/2( 2); 

2 PI+ 1/2 (2 ) 2 T,i?z 1/2 (2 ) (n+2 )Jn+ 1/2 (2) 

Therefore, (3.7) gives 

LEMMA 8. 

sgn y,; (T) =sgn{-T(JU7(-)+ 12() sgn yl( T) = gn t2 T Jn2_ I/2 2 2 + Jn+ 1/2( 2)) 

+ (2n - 1)n-1/2 2 Jn+1/2( 2 El 

An immediate conclusion from the last lemma is that yn(T) < 0 for T 
> 

2(2n - 1), because 

I Tt Ti 
+2 

T 
+i 2n - 'J 12 

T 
Jn 12 T\ 2 J n~-1/2\ 2 Jn+ 1/2\ )n12 2 J+/2\ 

- - (2n- 1)(Jn+12(2) 2 Jn-12( 2)) 

- 2 (nT- 2n + 1) (.2+1/2( 2) + Jn- 1/2(2)) < 

Moreover, by [7, p. 121] 

Jz)()-) + +), + (a+ +2); I] J.(zipz I='(a + i)r'(13+ 1) 2[ a + 143p+ 1, a +f+ 1;] 
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Therefore 

(3.8) 2 1 r n 21 
Jn2112( Z) 

=: (F(n + ))2 
1 

2 n + 1, 2n; 

Jz/ 
= ((n+4)) In+4,2n+2; ] | 

Let 

(3.9) Pn(z) =-z( J,1n2(z) +Jn1+l/2(z)) + (2n 2 

By Lemma 8 sgn y,(T) = sgn Pn(2 T). However, from (3.8) and (3.9) we obtain 

Pr22"(n + 
D1'(n 

+ ) 2n + ; 

Therefore, for T 2 0, sgn y'(T) = - sgn r(2 I T), where 

~~~~ n; 

(3.10) n()=F2 _z2 
Pn() : 

-(jn-11(Z +j+12n,n) + 3; )J-1()j+12 

LEMMA 9. If yn2(x) = 0, then uJ(x) 2 0, whenever x > 0. 

Proof. By straightforward calculation 

n+ 1;~~~~~~~n 

Pn(Z) 
22n- ir( + )( +3 

F 

u~(x) ='~[2n + 2,n+; 2 2; 

2nn + 2;21 

+ X4-1F2 1 xI . 
(2n+21)(2n + 3)2(2n( + 5) [2n+v4, n + J; 

But, because of (3.8) 

and, by (3.10), 
n + 2; 

(yn(X)= 
i'I -X2( 

lF2 3 x2 = An+2(X) 

2n+2 n + 4,n+ 

4,nc, i x O ad a+2 i n + 2 

Hence,if x 0 an u~2x) is nongtveXoi2u() 
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LEMMA 10. For every T > 0 and n 2 1, y,(T) s 0. 

Proof. First, let T > 1. By Lemmas 8 and 9 it is sufficient to show that, for every 
such T, there exists no = no(T) such that y,(T) < 0 for every n > nO. But for n > 0 
and T which is not an integer multiple of 1r, by (3.5) and considering the explicit 
expressions for En and Ub 

r2n(T)-(=1 n (2n)!T T2n sin T(1 I )) 
(4n,)! 2\\n/ 

r2n+ ?(T) = (_i) (2n + 1)! T2n+ I cos-T + ) 
(4n +2)! 2 nJ 

Therefore 

1( t27T' t T 

y'n 1(T) -2(4n + 1) 2 + 2(l) 

<- 1 (tg - l) + ?(l)?o 

for sufficiently large n. Furthermore, 

I(t2 T T 
-T( t2 2+1) -ctg 2 

Y2n(T) 2(4n - 1) T2 + (9(1) 

-_T2 (ctg -f + 1) + c(1) < 0o : 

where n is large enough. 
If T is a multiple of -r, the derivative of yn is nonnegative by continuity. 
Finally, let 0 < T7 ? 1. We use (3.10) and separate the even-powered and the 

odd-powered parts of a,(x): 

____ ___ 
n___2k 

_ ___ 4k 

(Tn(X) 2 
(2k)! (2n)2k(n + D)2k 

0, (n)2k+l 4k+2 

k=O (2k + 1)! (2n)2k+?(n + ?2k+ 

= 
0 

,(n)2kX4k 

k=O (2k + 1)!(2n)2k+?(n + 2)2k+1 

X {(2k + 1)(2n + 2k)(n + 3 + 2k) -x2(n + 2k)} 
00 

~~(n)2kX 4k2 

kIO (2k + 1)! (2n)2k(n + 3) 2(2k + 1)(n + k) -x2} 

~'(2n-x2) (n)2k x4k 
0 (2k + 1)!(2n)2k(n + B2k?I 

whenever 0 < x < 4/S. But sgn -y(T) -sgn a,(-! T), and so yyn(T) < 0 for 0 < T 
?2l2n . O 
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We sum up the results of this section in the following theorem: 

THEOREM 11. The coefficient yn of R* is a monotonically decreasing function of the 
fitting parameter T. R* coincides with the diagonal approximation R(,,1)/,,1). 
O sj < 2, when T > 0 is a zero of the spherical Bessel function Jn -j + I/2( 2 T). These 
zeros are arranged in the following order: 

0 < r (n2) < r(n t) < r(n) < r'n-2) < . 

It ought to be mentioned that the interlacing property of the rj(")'s, which is easily 
deduced from the inspection of the behavior of yn, can also be derived from the 
interlacing properties of the zeros of Bessel functions. 

The values of the first r(m)'s are displayed in Table I. 

TABLE I. r,('), 0 ? n s 6, 1 < i s 4 

n\i 1 2 3 4 

0 6.2831853 12.5663706 18.8495559 25.1327412 
1 8.9868189 15.4505037 21.8082433 28.1323878 
2 11.5269184 18.1900227 24.6458819 31.0292060 
3 13.9758640 20.8342371 27.3960463 33.8472426 
4 16.3651229 23.4098143 30.0793294 36.6025119 
5 18.7116242 25.9330603 32.7094193 39.3063042 
6 21.0256708 28.4147849 35.2959497 41.9669261 

4. A-Acceptability. In Norsett [6] a necessary and sufficient condition for the 
A-acceptability of Rn(z; a, ,B) was given (Ehle and Picel [2] give a sufficient 
condition only). Of interest to us is the A-acceptability of R*(z; y) in (2.9), which is 
a subclass of Rn(z; a, /3) with 

_ n 2n-lI 
n- I n - - 

By using Theorem 6 of Wanner, Hairer and Norsett [8] we are able to prove 

THEOREM 12. The frequency-fitted rational approximation R*(z; y) is A-acceptable 
if and only if y < 1. 

Proof. If -y < 1 the A-acceptability follows by Theorem 6 of [8]. To see that y > 1 
gives no A-acceptability, we study the behavior of R* as a function of -y. When y < I 
R* is A-acceptable and, because of symmetry of the numerator and the denominator 
about the pure imaginary axis, it has exactly n zeros in C(+) and n poles in C". 
When -y approaches 1 from below, a single zero and a single pole coalesce at the 
origin, as can be readily seen from (2.9). When y has passed 1 the pole moves to the 
left and the zero to the right half-plane, respectively. This happens because both the 
numerator and the denominator of R* are linear functions of -y. Hence, for -y > I R* 
is not analytic in C", and consequently cannot be A-acceptable. 

It ought to be stressed that the pole in C(-) cannot cross to C(+) for I < y < x: 
by symmetry, during such crossing it must coalesce with a zero. In this case there is a 
common linear factor in the numerator and the denominator. The reduction of this 
factor and order conditions at the origin imply that R* must coincide, for this 
particular y, with R(n 1)/(n_ 1). But this is impossible, because y > 1. D 
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FIGURE 3 
The behavior of the order-star of R* as a function of y. 
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By combining Theorems 11 and 12, we finally find 

THEOREM 13. The frequency fitted rational approximation R*(z; y(T)) is A-accepta- 
ble if and only if T belongs to one of the intervals [rj(- '), rJ+I2)] j = 0, 1,. . . , where 
we set r = 0. O 

Let us as an illustration look at the order star and see how it changes as y moves 
from 0 to - oo and then from + oo to 0 again. 

Since we have )! 2 
Am/m(Z) = (-1)m( (2m+ 1)! z2m+l + (9(Z2m+2) 

we easily find 

R*(z; y) = ez + (-I)ny[ (n -A! ]z2n- + (9(z2n) 

and 

R*( z; 0) = ez + (_-I )n+1 
n 

[( ! ]Z2n+l1 + o(9(Z2n+2 ) 

Without loss of generality, let us assume that n is odd, and even more so let n = 3. 
As y moves from 0 to - oo and from + oo to 0 the situation is as given in Figure 3. 

To conclude this paper, we show that the lack of A-acceptability can always be 
overcome by increasing n by one: 

THEOREM 14. If, for given T> 0, R*(z; y(T)) is not A-acceptable, then 
R*+ (z; y(T)) is A-acceptable. 

Proof. By Theorems 11 and 13, if R*(z, y(T)) is not A-acceptable then T belongs 
to an interval of the form (rm(n2), rmn-')), for some m > 1. By Theorem 11 
rm < rm$2), and so T E [r(n)2, r(n-1)]. The A-acceptability of R*n+ (z, yn(T)) 
follows by Theorem 13. 0 
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